The Bessel function of the first kind, \( J_1(x) \), is given by:
\[
J_1(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+2)} \left( \frac{x}{2} \right)^{2k+1}
\]
which simplifies to:
\[
J_1(x) = \frac{x}{2} - \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^2 \cdot 4 \cdot 6} - \dots
\]