Question:

Given the Bessel function:
$$ J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 2^2} - \frac{x^6}{2^2 \cdot 2^2 \cdot 2^2} + \dots $$ The Bessel function $ J_1(x) $ is given by:

Show Hint

Bessel functions appear in wave equations in cylindrical or spherical coordinates.
Updated On: Apr 11, 2025
  • \( \frac{x}{2} - \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^2 \cdot 4 \cdot 6} - \dots \)
  • \( 1 + \frac{x^2}{2^2} - \frac{x^4}{2^2 \cdot 4^2} + \dots \)
  • \( \frac{x}{2} - \frac{x^3}{2^2 \cdot 2^2} + \frac{x^5}{2^2 \cdot 2^2 \cdot 6} - \dots \)
  • None of the three
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The Bessel function of the first kind, \( J_1(x) \), is given by:
\[ J_1(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+2)} \left( \frac{x}{2} \right)^{2k+1} \] which simplifies to:
\[ J_1(x) = \frac{x}{2} - \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^2 \cdot 4 \cdot 6} - \dots \]
Was this answer helpful?
0
0