Step 1: Compute the gradient of \( f(x, y, z) = xyz \):
\[
\nabla f = \left( \dfrac{\partial f}{\partial x}, \dfrac{\partial f}{\partial y}, \dfrac{\partial f}{\partial z} \right) = (yz, xz, xy)
\]
At the point \( (1, 2, 3) \), we get:
\[
\nabla f(1, 2, 3) = (2 \cdot 3, 1 \cdot 3, 1 \cdot 2) = (6, 3, 2)
\]
Step 2: Normalize the direction vector \( \vec{v} = \langle 2, 1, -2 \rangle \):
\[
|\vec{v}| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3
\]
So the unit vector is
\[
\hat{u} = \left\langle \dfrac{2}{3}, \dfrac{1}{3}, \dfrac{-2}{3} \right\rangle
\]
Step 3: Use the formula for directional derivative:
\[
D_{\hat{u}} f = \nabla f \cdot \hat{u} = (6, 3, 2) \cdot \left( \dfrac{2}{3}, \dfrac{1}{3}, \dfrac{-2}{3} \right)
\]
\[
= 6 \cdot \dfrac{2}{3} + 3 \cdot \dfrac{1}{3} + 2 \cdot \left( \dfrac{-2}{3} \right) = \dfrac{12}{3} + \dfrac{3}{3} - \dfrac{4}{3} = \dfrac{11}{3}
\]
Final Answer: \( \boxed{\dfrac{11}{3}} \)