Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function \[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is __________ (round off to the nearest integer).
The directional derivative of a scalar field \( V(x, y) \) at a point \( (x_0, y_0) \) in the direction of a unit vector \( \hat{u} \) is given by:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} \]
First, compute the gradient:
\[ \nabla V = \left( \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right) = (2x + 1, 2y) \]
At the origin \( (0, 0) \):
\[ \nabla V(0, 0) = (1, 0) \]
Next, the direction vector from origin to point \( (1, 2) \) is:
\[ \vec{v} = (1, 2) \Rightarrow \hat{u} = \frac{1}{\sqrt{1^2 + 2^2}}(1, 2) = \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) \]
Now compute the directional derivative:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} = (1, 0) \cdot \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) = \frac{1}{\sqrt{5}} \approx 0.447 \]
\[ \text{Rounded answer lies between 0 and 1} \]
Given a function \( y(x) \) satisfying the differential equation \[ y'' - 0.25y = 0, \] with initial conditions \( y(0) = 1 \); \( y'(0) = 1 \), what is the value of \( y(\log_e 100) \)?
here, y' and y'' are the first and second derivatives of y, respectively.
If \( f(x) = x - \frac{1}{x} \), the value of
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).
Two units, rated at 100 MW and 150 MW, are enabled for economic load dispatch. When the overall incremental cost is 10,000 Rs./MWh, the units are dispatched to 50 MW and 80 MW respectively. At an overall incremental cost of 10,600 Rs./MWh, the power output of the units are 80 MW and 92 MW, respectively. The total plant MW-output (without overloading any unit) at an overall incremental cost of 11,800 Rs./MWh is ___________ (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is __________ (round off to one decimal place).
Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is __________ (round off to the nearest integer).
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).