Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function \[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is __________ (round off to the nearest integer).
The directional derivative of a scalar field \( V(x, y) \) at a point \( (x_0, y_0) \) in the direction of a unit vector \( \hat{u} \) is given by:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} \]
First, compute the gradient:
\[ \nabla V = \left( \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right) = (2x + 1, 2y) \]
At the origin \( (0, 0) \):
\[ \nabla V(0, 0) = (1, 0) \]
Next, the direction vector from origin to point \( (1, 2) \) is:
\[ \vec{v} = (1, 2) \Rightarrow \hat{u} = \frac{1}{\sqrt{1^2 + 2^2}}(1, 2) = \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) \]
Now compute the directional derivative:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} = (1, 0) \cdot \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) = \frac{1}{\sqrt{5}} \approx 0.447 \]
\[ \text{Rounded answer lies between 0 and 1} \]
Given a function \( y(x) \) satisfying the differential equation \[ y'' - 0.25y = 0, \] with initial conditions \( y(0) = 1 \); \( y'(0) = 1 \), what is the value of \( y(\log_e 100) \)?
here, y' and y'' are the first and second derivatives of y, respectively.
If \( f(x) = x - \frac{1}{x} \), the value of
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.