Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function \[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is __________ (round off to the nearest integer).
The directional derivative of a scalar field \( V(x, y) \) at a point \( (x_0, y_0) \) in the direction of a unit vector \( \hat{u} \) is given by:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} \]
First, compute the gradient:
\[ \nabla V = \left( \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right) = (2x + 1, 2y) \]
At the origin \( (0, 0) \):
\[ \nabla V(0, 0) = (1, 0) \]
Next, the direction vector from origin to point \( (1, 2) \) is:
\[ \vec{v} = (1, 2) \Rightarrow \hat{u} = \frac{1}{\sqrt{1^2 + 2^2}}(1, 2) = \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) \]
Now compute the directional derivative:
\[ D_{\hat{u}} V = \nabla V \cdot \hat{u} = (1, 0) \cdot \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) = \frac{1}{\sqrt{5}} \approx 0.447 \]
\[ \text{Rounded answer lies between 0 and 1} \]
Given a function \( y(x) \) satisfying the differential equation \[ y'' - 0.25y = 0, \] with initial conditions \( y(0) = 1 \); \( y'(0) = 1 \), what is the value of \( y(\log_e 100) \)?
here, y' and y'' are the first and second derivatives of y, respectively.
If \( f(x) = x - \frac{1}{x} \), the value of
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?