Let A={z∈C:∣z−2−i∣=3}A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}A={z∈C:∣z−2−i∣=3}, B={z∈C:Re(z−iz)=2}B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}B={z∈C:Re(z−iz)=2}, and S=A∩BS = A \cap BS=A∩B. Then ∑z∈S∣z∣2\sum_{z \in S} |z|^2∑z∈S∣z∣2 is equal to
If y(x)=∣sinxcosxsinx+cosx+1272827111∣ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} y(x)=sinx271cosx281sinx+cosx+1271, x∈R x \in \mathbb{R} x∈R, then d2ydx2+y \frac{d^2y}{dx^2} + y dx2d2y+y is equal to