Step 1: The function \( f(x) = \frac{e^x}{1+e^x} \) is given, and we are tasked with evaluating the ratio \(\frac{I_2}{I_1}\), where:
\[ I_1 = \int_{-a}^a x g(x(1-x)) \, dx \quad \text{and} \quad I_2 = \int_{-a}^a g(x(1-x)) \, dx. \]
Step 2: To evaluate the integrals, we first look at the symmetry of the integrands. The function \( g(x(1-x)) \) is symmetric in the interval \([-a, a]\), and thus, the integral \( I_2 \) becomes straightforward.
Step 3: Given that \( x \) appears in \( I_1 \), and the symmetry of the integrand in \( I_2 \) cancels out the effect of \( x \), the value of \(\frac{I_2}{I_1}\) simplifies to 2.
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A stationary tank is cylindrical in shape with two hemispherical ends and is horizontal, as shown in the figure. \(R\) is the radius of the cylinder as well as of the hemispherical ends. The tank is half filled with an oil of density \(\rho\) and the rest of the space in the tank is occupied by air. The air pressure, inside the tank as well as outside it, is atmospheric. The acceleration due to gravity (\(g\)) acts vertically downward. The net horizontal force applied by the oil on the right hemispherical end (shown by the bold outline in the figure) is:
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: