Step 1: The function \( f(x) = \frac{e^x}{1+e^x} \) is given, and we are tasked with evaluating the ratio \(\frac{I_2}{I_1}\), where:
\[ I_1 = \int_{-a}^a x g(x(1-x)) \, dx \quad \text{and} \quad I_2 = \int_{-a}^a g(x(1-x)) \, dx. \]
Step 2: To evaluate the integrals, we first look at the symmetry of the integrands. The function \( g(x(1-x)) \) is symmetric in the interval \([-a, a]\), and thus, the integral \( I_2 \) becomes straightforward.
Step 3: Given that \( x \) appears in \( I_1 \), and the symmetry of the integrand in \( I_2 \) cancels out the effect of \( x \), the value of \(\frac{I_2}{I_1}\) simplifies to 2.
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals

Which of the following statement(s) is/are correct about the given compound?
