Step 1: The function \( f(x) = \frac{e^x}{1+e^x} \) is given, and we are tasked with evaluating the ratio \(\frac{I_2}{I_1}\), where:
\[ I_1 = \int_{-a}^a x g(x(1-x)) \, dx \quad \text{and} \quad I_2 = \int_{-a}^a g(x(1-x)) \, dx. \]
Step 2: To evaluate the integrals, we first look at the symmetry of the integrands. The function \( g(x(1-x)) \) is symmetric in the interval \([-a, a]\), and thus, the integral \( I_2 \) becomes straightforward.
Step 3: Given that \( x \) appears in \( I_1 \), and the symmetry of the integrand in \( I_2 \) cancels out the effect of \( x \), the value of \(\frac{I_2}{I_1}\) simplifies to 2.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: