If $ f(x) = \frac{1}{x^2} $, $ u = f(x) $, and $ f'(x) $, then find $ \frac{du}{dx} $.
Show Hint
For functions of the form \( \frac{1}{x^n} \), the derivative is \( -n x^{-(n+1)} \). Keep this in mind when differentiating rational powers of \( x \).
We are given:
\[
f(x) = \frac{1}{x^2}
\]
Now, we need to differentiate \( f(x) \) to find \( f'(x) \):
\[
f'(x) = \frac{d}{dx} \left( \frac{1}{x^2} \right)
\]
Using the power rule for differentiation \( \frac{d}{dx} x^n = n x^{n-1} \), we get:
\[
f'(x) = -2x^{-3} = -\frac{2}{x^3}
\]
Thus, \( \frac{du}{dx} = f'(x) = -\frac{2}{x^3} \).