We are given:
\[
x = a \left( \cos \theta + \log \tan \frac{\theta}{2} \right)
\]
and
\[
y = \sin \theta.
\]
First, differentiate \( y = \sin \theta \) with respect to \( \theta \):
\[
\frac{dy}{d\theta} = \cos \theta.
\]
Next, differentiate \( x = a \left( \cos \theta + \log \tan \frac{\theta}{2} \right) \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = a \left( -\sin \theta + \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2 \cos^2 \frac{\theta}{2}} \right).
\]
To compute \( \frac{d^2y}{dx^2} \), we use the chain rule:
\[
\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta} \left( \frac{dy}{d\theta} \right)}{\frac{dx}{d\theta}}.
\]
Now, substitute the values at \( \theta = \frac{\pi}{4} \). At \( \theta = \frac{\pi}{4} \), \( \sin \theta = \frac{\sqrt{2}}{2} \), \( \cos \theta = \frac{\sqrt{2}}{2} \), and \( \tan \frac{\theta}{2} = 1 \).
Thus, evaluate:
\[
\frac{d^2y}{dx^2} \bigg|_{\theta = \frac{\pi}{4}}.
\]
This will give the desired result.