If F(x)= \(\begin{bmatrix}\cos x&\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\)and F(y)=\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\),show that F(x)+F(y)=F(x+y)
F(x)=\(\begin{bmatrix}\cos x&-\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\),F(y)=\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\)
F (x+y)=\(\begin{bmatrix}\cos (x+y)&-\sin (x+y)&0\\\sin (x+y)&cos (x+y)&0\\0&0&1\end{bmatrix}\)
F(x)F(y)=\(\begin{bmatrix}\cos x&-\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\)\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\)
=\(\begin{bmatrix}\cos x\cos y-\sin x\sin y+0&-\cos x\sin y-\sin x\cos y+0&0\\\sin x\cos y+\cos x\sin y&-\sin x\sin y+\cos x\cos y+0&0\\0&0&0\end{bmatrix}\)
=\(\begin{bmatrix}\cos (x+y)&-\sin(x+y)&0\\\sin (x+y)&\cos(x+y)&0\\0&0&1\end{bmatrix}\)
=F(x+y)
\(\therefore\) F(x)+F(y)=F(x+y)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)