If F(x)= \(\begin{bmatrix}\cos x&\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\)and F(y)=\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\),show that F(x)+F(y)=F(x+y)
F(x)=\(\begin{bmatrix}\cos x&-\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\),F(y)=\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\)
F (x+y)=\(\begin{bmatrix}\cos (x+y)&-\sin (x+y)&0\\\sin (x+y)&cos (x+y)&0\\0&0&1\end{bmatrix}\)
F(x)F(y)=\(\begin{bmatrix}\cos x&-\sin x&0\\\sin x&cos x&0\\0&0&1\end{bmatrix}\)\(\begin{bmatrix}\cos y&-\sin y&0\\\sin y&cos y&0\\0&0&1\end{bmatrix}\)
=\(\begin{bmatrix}\cos x\cos y-\sin x\sin y+0&-\cos x\sin y-\sin x\cos y+0&0\\\sin x\cos y+\cos x\sin y&-\sin x\sin y+\cos x\cos y+0&0\\0&0&0\end{bmatrix}\)
=\(\begin{bmatrix}\cos (x+y)&-\sin(x+y)&0\\\sin (x+y)&\cos(x+y)&0\\0&0&1\end{bmatrix}\)
=F(x+y)
\(\therefore\) F(x)+F(y)=F(x+y)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?