Question:

if $\ f ( x )$ $=\bigg \{ \begin {array} \ e^{\cos x}\sin \ x \\ 2 \\ \end {array} \begin {array} \ for |x|\le 2 \\ \text{otherwise} \\ \end {array}$ then $\int^{3}_{-2} f ( x ) \ dx$ is equal to

Updated On: Jun 14, 2022
  • 0
  • 1
  • 2
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

if $\ f ( x )$ $=\bigg \{ \begin {array}
\ e^{\cos x}\sin \ x \\
2 \\
\end {array} \begin {array}
\ for |x|\le 2 \\
\text{otherwise} \\
\end {array}$
$ \therefore \int^{3}_{-2} \ f ( x) \ dx = \int^2_{-2} f ( x ) \ dx + \int^3_2 \ f ( x ) \ dx $
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \int^2_{-2} \ e^{\cos \ x } \ \sin \ x \ dx + \int^3_2 2 \ dx $
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 0 + 2 [x]^3_2 $
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \because e^{\cos \ x }\sin \ x $ is an odd function $] $
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2 [ 3 - 2 ] = 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \because \int^{3}_{-2} \ f ( x ) \ dx = 2 ] $
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.