If the mean of \( x, y, 3, 4 \) is 5, then \( x + y = ? \)
Show Hint
To find the sum of numbers when the mean is given, use the formula \( \text{Mean} = \frac{\text{Sum of terms}}{\text{Number of terms}} \) and solve for the sum.
We are given that the mean of \( x, y, 3, 4 \) is 5.
Step 1: The formula for the mean of four numbers is:
\[
\text{Mean} = \frac{x + y + 3 + 4}{4}
\]
Step 2: Substituting the given mean value (5):
\[
5 = \frac{x + y + 3 + 4}{4}
\]
Step 3: Simplify the equation:
\[
5 = \frac{x + y + 7}{4}
\]
\[
5 \times 4 = x + y + 7
\]
\[
20 = x + y + 7
\]
\[
x + y = 20 - 7 = 13
\]
Thus, \( x + y = 13 \).