Let us simplify the expression by multiplying numerator and denominator of each term by the conjugate of the denominator:
\[
\dfrac{x - 1}{3 + i} = \dfrac{(x - 1)(3 - i)}{(3 + i)(3 - i)} = \dfrac{(x - 1)(3 - i)}{10}
\]
\[
\dfrac{y - 1}{3 - i} = \dfrac{(y - 1)(3 + i)}{10}
\]
Adding the two:
\[
\dfrac{(x - 1)(3 - i) + (y - 1)(3 + i)}{10} = i
\]
Multiply both sides by 10:
\[
(x - 1)(3 - i) + (y - 1)(3 + i) = 10i
\]
Expand:
\[
(3x - 3 - ix + i) + (3y - 3 + iy - i) = 10i
\Rightarrow (3x - 3 + 3y - 3) + (-ix + i + iy - i) = 10i
\Rightarrow 3x + 3y - 6 - i(x - y) = 10i
\]
Equating real and imaginary parts:
Real: $3x + 3y - 6 = 0 \Rightarrow x + y = 2$
Imaginary: $-x + y = 10$
Solve:
From $x + y = 2$ and $-x + y = 10$, adding both:
$2y = 12 \Rightarrow y = 6 \Rightarrow x = -4$
Hence, $x<0,\ y>0$.