At constant pressure, $\Delta Q = nC_p \Delta T$, and $\Delta W = nR \Delta T$
Also, $C_p = \dfrac{\gamma R}{\gamma - 1}$ ⇒ $\Delta Q = n \cdot \dfrac{\gamma R}{\gamma - 1} \cdot \Delta T$
So, $\dfrac{\Delta Q}{\Delta W} = \dfrac{n \cdot \dfrac{\gamma R}{\gamma - 1} \cdot \Delta T}{nR \cdot \Delta T} = \dfrac{\gamma}{\gamma - 1}$