>
Exams
>
Mathematics
>
Trigonometry
>
if cot alpha 1 cot alpha 2 cdots cot alpha n 1 wi
Question:
If $(\cot \alpha_1)(\cot \alpha_2) \cdots (\cot \alpha_n) = 1$, with $0<\alpha_1, \alpha_2, \ldots, \alpha_n<\frac{\pi}{2}$, then the maximum value of $(\cos \alpha_1)(\cos \alpha_2) \cdots (\cos \alpha_n)$ is
WBJEE - 2022
WBJEE
Updated On:
Apr 15, 2025
1/2n/2
1/2n
1/2n
1
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Given:
Let \( 0<\alpha_1, \alpha_2, \ldots, \alpha_n<\frac{\pi}{2} \), and \[ \cot \alpha_1 \cdot \cot \alpha_2 \cdots \cot \alpha_n = 1 \] We are to find the
maximum value
of \[ (\cos \alpha_1)(\cos \alpha_2) \cdots (\cos \alpha_n) \]
Step 1: Express cotangent in terms of sine and cosine.
Recall: \[ \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \] So, \[ \cot \alpha_1 \cdot \cot \alpha_2 \cdots \cot \alpha_n = \frac{\cos \alpha_1}{\sin \alpha_1} \cdot \frac{\cos \alpha_2}{\sin \alpha_2} \cdots \frac{\cos \alpha_n}{\sin \alpha_n} = \frac{(\cos \alpha_1)(\cos \alpha_2) \cdots (\cos \alpha_n)}{(\sin \alpha_1)(\sin \alpha_2) \cdots (\sin \alpha_n)} \] Given this product equals 1, we have: \[ \frac{\prod_{i=1}^n \cos \alpha_i}{\prod_{i=1}^n \sin \alpha_i} = 1 \Rightarrow \prod_{i=1}^n \cos \alpha_i = \prod_{i=1}^n \sin \alpha_i \] Let: \[ P = \prod_{i=1}^n \cos \alpha_i \Rightarrow P = \prod_{i=1}^n \sin \alpha_i \Rightarrow P^2 = \left( \prod_{i=1}^n \cos \alpha_i \right)\left( \prod_{i=1}^n \sin \alpha_i \right) \] So: \[ P^2 = \prod_{i=1}^n (\cos \alpha_i \sin \alpha_i) = \prod_{i=1}^n \frac{1}{2} \sin 2\alpha_i \Rightarrow P^2 = \frac{1}{2^n} \prod_{i=1}^n \sin 2\alpha_i \] Thus: \[ P = \sqrt{ \frac{1}{2^n} \prod_{i=1}^n \sin 2\alpha_i } \]
Step 2: Maximize the product of sines.
Since \( 0<\alpha_i<\frac{\pi}{2} \), the values \( 0<2\alpha_i<\pi \), and \( \sin 2\alpha_i \leq 1 \). Using the inequality of arithmetic and geometric means (AM–GM inequality), the product \( \prod_{i=1}^n \sin 2\alpha_i \) is maximized when all \( \sin 2\alpha_i \) are equal. That happens when all \( \alpha_i \) are equal, i.e.: \[ \alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha \] Then the cotangent condition becomes: \[ \cot^n \alpha = 1 \Rightarrow \cot \alpha = 1 \Rightarrow \alpha = \frac{\pi}{4} \] Now: \[ \cos \alpha = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \Rightarrow \prod_{i=1}^n \cos \alpha_i = \left( \frac{1}{\sqrt{2}} \right)^n = \frac{1}{2^{n/2}} \]
Final Answer:
\[ \boxed{ \frac{1}{2^{n/2}} } \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
The given graph illustrates:
CBSE CLASS XII - 2025
Mathematics
Trigonometry
View Solution
In a right triangle ABC, right-angled at A, if $\sin B = \dfrac{1}{4}$, then the value of $\sec B$ is
CBSE Class X - 2025
Mathematics
Trigonometry
View Solution
If \( \sin \theta + \cos \theta = \sqrt{2} \), what is the value of \( \sin \theta \cos \theta \)?
BITSAT - 2025
Mathematics
Trigonometry
View Solution
Prove that \(\dfrac{\sin \theta}{1 + \cos \theta} + \dfrac{1 + \cos \theta}{\sin \theta} = 2\csc \theta\)
CBSE Class X - 2025
Mathematics
Trigonometry
View Solution
Domain of $f(x) = \cos^{-1} x + \sin x$ is:
CBSE CLASS XII - 2025
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in WBJEE exam
Which logic gate is represented by the following combination of logic gates?
WBJEE - 2025
Logic gates
View Solution
If \( {}^9P_3 + 5 \cdot {}^9P_4 = {}^{10}P_r \), then the value of \( 'r' \) is:
WBJEE - 2025
permutations and combinations
View Solution
If \( 0 \leq a, b \leq 3 \) and the equation \( x^2 + 4 + 3\cos(ax + b) = 2x \) has real solutions, then the value of \( (a + b) \) is:
WBJEE - 2025
Trigonometric Equations
View Solution
Let \( f(\theta) = \begin{vmatrix} 1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1 \end{vmatrix} \). Suppose \( A \) and \( B \) are respectively the maximum and minimum values of \( f(\theta) \). Then \( (A, B) \) is equal to:
WBJEE - 2025
Matrix
View Solution
If \( a, b, c \) are in A.P. and if the equations \( (b - c)x^2 + (c - a)x + (a - b) = 0 \) and \( 2(c + a)x^2 + (b + c)x = 0 \) have a common root, then
WBJEE - 2025
Quadratic Equations
View Solution
View More Questions