Question:

If \( \cosh(x - \log 3) = \sinh x \), then \( x = \):

Show Hint

Hyperbolic Equations}
Use definitions of \( \cosh, \sinh \) in exponential form
Substitute candidate values to verify
Logarithmic transformations often simplify the exponentials
Updated On: May 19, 2025
  • \( \frac{1}{2} \log 3 \)
  • \( \frac{1}{2} \log 6 \)
  • \( \frac{1}{2} \log 5 \)
  • \( \log 3 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Recall identities: \[ \cosh a = \frac{e^a + e^{-a}}{2}, \quad \sinh b = \frac{e^b - e^{-b}}{2} \] So: \[ \frac{e^{x - \log 3} + e^{-(x - \log 3)}}{2} = \frac{e^x - e^{-x}}{2} \] Multiply both sides by 2: \[ e^{x - \log 3} + e^{-(x - \log 3)} = e^x - e^{-x} \] Let \( x = \frac{1}{2} \log 6 \), test both sides match.
Was this answer helpful?
0
0