Recall identities:
\[
\cosh a = \frac{e^a + e^{-a}}{2}, \quad \sinh b = \frac{e^b - e^{-b}}{2}
\]
So:
\[
\frac{e^{x - \log 3} + e^{-(x - \log 3)}}{2} = \frac{e^x - e^{-x}}{2}
\]
Multiply both sides by 2:
\[
e^{x - \log 3} + e^{-(x - \log 3)} = e^x - e^{-x}
\]
Let \( x = \frac{1}{2} \log 6 \), test both sides match.