Recall the identities:
\[
\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}, \quad \sinh(2x) = \frac{e^{2x} - e^{-2x}}{2}
\]
Substitute into the equation:
\[
2 \cdot \frac{e^{2x} + e^{-2x}}{2} + 10 \cdot \frac{e^{2x} - e^{-2x}}{2} = 5
\Rightarrow (e^{2x} + e^{-2x}) + 5(e^{2x} - e^{-2x}) = 5
\]
Simplify:
\[
e^{2x} + e^{-2x} + 5e^{2x} - 5e^{-2x} = 5
\Rightarrow (1 + 5)e^{2x} + (1 - 5)e^{-2x} = 5
\Rightarrow 6e^{2x} - 4e^{-2x} = 5
\]
Multiply through by \( e^{2x} \):
\[
6e^{4x} - 4 = 5e^{2x}
\Rightarrow 6e^{4x} - 5e^{2x} - 4 = 0
\]
Let \( y = e^{2x} \), then:
\[
6y^2 - 5y - 4 = 0
\Rightarrow y = \frac{5 \pm \sqrt{25 + 96}}{12} = \frac{5 \pm \sqrt{121}}{12} = \frac{5 \pm 11}{12}
\]
So:
\[
y = \frac{16}{12} = \frac{4}{3},\quad \text{or } y = \frac{-6}{12} = -\frac{1}{2} \text{ (reject, since } y = e^{2x}>0\text{)}
\]
Now:
\[
e^{2x} = \frac{4}{3} \Rightarrow 2x = \log\left(\frac{4}{3}\right) \Rightarrow x = \frac{1}{2} \log\left( \frac{4}{3} \right)
\]