Step 1: Find \( \sin(\theta + \phi) \) and \( \cos(\theta - \phi) \).
Given \( \cos(\theta + \phi) = \frac{3}{5} \) and \( 0<\theta + \phi<\frac{\pi}{2} \),
\[
\sin(\theta + \phi) = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}
\]
Given \( \sin(\theta - \phi) = \frac{5}{13} \) and \( -\frac{\pi}{4}<\theta - \phi<\frac{\pi}{4} \),
\[
\cos(\theta - \phi) = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}
\]
Step 2: Use sum formula for \( \sin(2\theta) \) and \( \cos(2\theta) \).
Since \( 2\theta = (\theta + \phi) + (\theta - \phi) \),
\[
\sin(2\theta) = \sin(\theta + \phi)\cos(\theta - \phi) + \cos(\theta + \phi)\sin(\theta - \phi) = \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) + \left(\frac{3}{5}\right)\left(\frac{5}{13}\right) = \frac{48 + 15}{65} = \frac{63}{65}
\]
\[
\cos(2\theta) = \cos(\theta + \phi)\cos(\theta - \phi) - \sin(\theta + \phi)\sin(\theta - \phi) = \left(\frac{3}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{4}{5}\right)\left(\frac{5}{13}\right) = \frac{36 - 20}{65} = \frac{16}{65}
\]
Step 3: Calculate \( \cot(2\theta) \).
\[
\cot(2\theta) = \frac{\cos(2\theta)}{\sin(2\theta)} = \frac{\frac{16}{65}}{\frac{63}{65}} = \frac{16}{63}
\]