\(cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2\)
Differentiate on both side
\(-\frac{ 1}{\sqrt{1-(\frac{y}{2})^2}} \times \frac{y'}{2} =\frac{ 5}{\frac{x}{5}} \times \frac{1}{5}\)
\(-\frac{xy'}{2} = 5 \sqrt{1-(\frac{y}{2})^2}\)
Square on both side
\(\frac{x^2y'^2}{4} = 25\bigg(\frac{4-y^2}{4}\bigg)\)
Diff on both side
\(2xy'^2+2y'y''x^2=-25 \times 2yy'\)
\(xy'+y''x^2+25y = 0\)
Hence, the correct option is (D): \(x^2y′′ + xy′+ 25y = 0\)
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]
If
\[ \cos x + \sin x = \frac{1}{2} \]
and
\[ 0 < x < \pi, \text{ then } \tan x = \ ? \]
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Various trigonometric identities are as follows:
Cosecant and Secant are even functions, all the others are odd.
T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2x
= 2cos2x – 1
= 1 – 2sin2x
T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx