\(cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2\)
Differentiate on both side
\(-\frac{ 1}{\sqrt{1-(\frac{y}{2})^2}} \times \frac{y'}{2} =\frac{ 5}{\frac{x}{5}} \times \frac{1}{5}\)
\(-\frac{xy'}{2} = 5 \sqrt{1-(\frac{y}{2})^2}\)
Square on both side
\(\frac{x^2y'^2}{4} = 25\bigg(\frac{4-y^2}{4}\bigg)\)
Diff on both side
\(2xy'^2+2y'y''x^2=-25 \times 2yy'\)
\(xy'+y''x^2+25y = 0\)
Hence, the correct option is (D): \(x^2y′′ + xy′+ 25y = 0\)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Various trigonometric identities are as follows:
Cosecant and Secant are even functions, all the others are odd.
T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2x
= 2cos2x – 1
= 1 – 2sin2x
T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx