Question:

If cos1(y2)=loge(x5)5,y<2cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2 then:

Updated On: Jun 7, 2024
  • x2y′′+xy′–25y=0x^2y′′ + xy′ – 25y = 0
  • x2y′′–xy′–25y=0x^2y′′ – xy′ – 25y = 0
  • x2y′′–xy+25y=0x^2y′′ – xy′+ 25y = 0
  • x2y′′+xy+25y=0x^2y′′ + xy′+ 25y = 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

cos1(y2)=loge(x5)5,y<2cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2 

Differentiate on both side

11(y2)2×y2=5x5×15-\frac{ 1}{\sqrt{1-(\frac{y}{2})^2}} \times \frac{y'}{2} =\frac{ 5}{\frac{x}{5}} \times \frac{1}{5}

xy2=5 1(y2)2-\frac{xy'}{2} = 5 \sqrt{1-(\frac{y}{2})^2}

Square on both side

x2y24=25(4y24)\frac{x^2y'^2}{4} = 25\bigg(\frac{4-y^2}{4}\bigg)

Diff on both side

2xy2+2yyx2=25×2yy2xy'^2+2y'y''x^2=-25 \times 2yy'

xy+yx2+25y=0xy'+y''x^2+25y = 0

Hence, the correct option is (D): x2y′′+xy+25y=0x^2y′′ + xy′+ 25y = 0

Was this answer helpful?
2
0

Top Questions on Trigonometric Identities

View More Questions

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Trigonometric Identities

Various trigonometric identities are as follows:

Even and Odd Functions

Cosecant and Secant are even functions, all the others are odd.

  • sin (-A) = – sinA,
  • cos (-A) = cos A,
  • cosec (-A) = -cosec A,
  • cot (-A) = -cot A,
  • tan (-A) = – tan A,
  • sec (-A) = sec A.

Pythagorean Identities

  1. sin2θ + cos2θ = 1
  2. 1 + tan2θ = sec2θ
  3. 1 + cot2θ = cosec2θ

Periodic Functions

  1. T-Ratios of (2π + x)
    sin (2π + x) = sin x,
    cos (2π + x) = cos x,
    tan (2π + x) = tan x,
    cosec (2π + x) = cosec x,
    sec (2π + x) = sec x,
    cot (2π+x)=cotx.
  2. T-Ratios of (π -x)
    sin (π–x) = sin x,
    cos (π–x) = - cos x,
    tan (π–x) = - tan x,
    cosec (π–x) = cosec x,
    sec (π–x) = - sec x,
    cot (π–x) = - cot x.
  3. T-Ratios of (π+ x)
    sin (π+x) = - sin x,
    cos (π+x) = - cos x,
    tan (π+x) = tan x,
    cosec (π+x) = - cosec x,
    sec (π+x) = - sec x,
    cot (π+x) = cot x.
  4. T-Ratios of (2π – x)
    sin (2π–x) = - sin x,
    cos (2n–x) = cos x,
    tan (2π–x) = - tan x,
    cosec (2π–x) = - cosec x,
    sec (2π–x) = sec x,
    cot (2π-x) = - cot x

Sum and Difference Identities

  1. T-Ratios of (x + y)
    sin (x+y) = sinx.cosy + cosx.sin y
    cos (x+y) = cosx.cosy – sinx.siny
  2. T-Ratios of (x – y)
    sin (x–y) = sinx.cosy – cos.x.sin y
    cos (x-y) = cosx.cosy + sinx.siny

Product of T-ratios

  • 2sinx cosy = sin(x+y) + sin(x–y)
  • 2cosx siny = sin(x+y) – sin(x–y)
  • 2 cosx cosy = cos(x+y) + cos(x–y)
  • 2sinx.siny = cos(x–y) – cos(x+y)

T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2

= 2cos2x – 1 

= 1 – 2sin2x

T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx