The determinant is:
\[\Delta= \begin{vmatrix} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{vmatrix}\]
Step 1: Factor out common terms.
Factor out \(x^k y^k z^k\) from each row:
\[\Delta= x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix}\]
Step 2: Simplify the remaining determinant.
The simplified determinant is:
\[\begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx).\]
Thus:
\[\Delta= x^k y^k z^k (x-y)(y-z)(z-x)(xy+yz+zx).\]
Step 3: Match with the given expression.
The given determinant is:
\[(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\]
Rewrite:
\[\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}.\]
The full expression becomes:
\[\Delta=(x-y)(y-z)(z-x)\cdot\frac{xy+yz+zx}{xyz}.\]
Step 4: Equate powers of x, y, z.
Compare \(x^k y^k z^k\) with \(\frac{1}{xyz}\)
\[x^k y^k z^k = \frac{1}{xyz}.\]
This implies k = -1
This implies:
\[k - 1 - 1 = -1 \implies k = -1.\]
Conclusion: The value of k is:
\(\boxed{-1}\).
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:

A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: