The determinant is:
\[\Delta= \begin{vmatrix} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{vmatrix}\]
Step 1: Factor out common terms.
Factor out \(x^k y^k z^k\) from each row:
\[\Delta= x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix}\]
Step 2: Simplify the remaining determinant.
The simplified determinant is:
\[\begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx).\]
Thus:
\[\Delta= x^k y^k z^k (x-y)(y-z)(z-x)(xy+yz+zx).\]
Step 3: Match with the given expression.
The given determinant is:
\[(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\]
Rewrite:
\[\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}.\]
The full expression becomes:
\[\Delta=(x-y)(y-z)(z-x)\cdot\frac{xy+yz+zx}{xyz}.\]
Step 4: Equate powers of x, y, z.
Compare \(x^k y^k z^k\) with \(\frac{1}{xyz}\)
\[x^k y^k z^k = \frac{1}{xyz}.\]
This implies k = -1
This implies:
\[k - 1 - 1 = -1 \implies k = -1.\]
Conclusion: The value of k is:
\(\boxed{-1}\).
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]