The given matrix equation is:
\[\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \cdot A \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\]
Let \[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.\] Substituting A into the equation, we compute step-by-step.
Step 1: Simplify the right product \[A \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}.\]
\[A \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}.\]
Multiply the matrices:
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} -3a + 5b & 2a - 3b \\ -3c + 5d & 2c - 3d \end{pmatrix}.\]
Step 2: Multiply by \[\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}.\]
Now multiply:
\[\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3a + 5b & 2a - 3b \\ -3c + 5d & 2c - 3d \end{pmatrix}.\]
Perform the matrix multiplication:
\[\begin{pmatrix} 2(-3a + 5b) + 1(-3c + 5d) & 2(2a - 3b) + 1(2c - 3d) \\ 3(-3a + 5b) + 2(-3c + 5d) & 3(2a - 3b) + 2(2c - 3d) \end{pmatrix}.\]
Simplify each term: - First row, first column:
\[2(-3a + 5b) + (-3c + 5d) = -6a + 10b - 3c + 5d.\]
- First row, second column:
\[2(2a - 3b) + (2c - 3d) = 4a - 6b + 2c - 3d.\]
- Second row, first column:
\[3(-3a + 5b) + 2(-3c + 5d) = -9a + 15b - 6c + 10d.\]
- Second row, second column:
\[3(2a - 3b) + 2(2c - 3d) = 6a - 9b + 4c - 6d.\]
Thus, the resulting matrix is:
\[\begin{pmatrix} -6a + 10b - 3c + 5d & 4a - 6b + 2c - 3d \\ -9a + 15b - 6c + 10d & 6a - 9b + 4c - 6d \end{pmatrix}.\]
Step 3: Equate to identity matrix.
We equate:
\[\begin{pmatrix} -6a + 10b - 3c + 5d & 4a - 6b + 2c - 3d \\ -9a + 15b - 6c + 10d & 6a - 9b + 4c - 6d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\]
From this, solve the system of equations:
Solve this system, and you find:
\[A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.\]
Conclusion: The matrix A is:
\[\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.\]