Concept: For a quadratic polynomial \(ax^2 + bx + c\), if \(\alpha\) and \(\beta\) are its zeros, then:
Sum of zeros: \(\alpha + \beta = -\frac{b}{a}\)
Product of zeros: \(\alpha\beta = \frac{c}{a}\)
We also use the algebraic identity: \(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\).
Step 1: Identify coefficients a, b, and c from the given polynomial
The given polynomial is \(2x^2 - 7x + 3\).
Comparing with \(ax^2 + bx + c\):
\(a = 2\)
\(b = -7\)
\(c = 3\)
Step 2: Calculate the sum of the zeros (\(\alpha + \beta\))
\[ \alpha + \beta = -\frac{b}{a} = -\frac{(-7)}{2} = \frac{7}{2} \]
Step 3: Calculate the product of the zeros (\(\alpha\beta\))
\[ \alpha\beta = \frac{c}{a} = \frac{3}{2} \]
Step 4: Use the identity to find \(\alpha^2 + \beta^2\)
The identity is \(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\).
Substitute the values of \(\alpha + \beta\) and \(\alpha\beta\):
\[ \alpha^2 + \beta^2 = \left(\frac{7}{2}\right)^2 - 2\left(\frac{3}{2}\right) \]
\[ \alpha^2 + \beta^2 = \frac{7^2}{2^2} - \frac{2 \times 3}{2} \]
\[ \alpha^2 + \beta^2 = \frac{49}{4} - 3 \]
To subtract, find a common denominator (which is 4):
\[ 3 = \frac{3 \times 4}{4} = \frac{12}{4} \]
\[ \alpha^2 + \beta^2 = \frac{49}{4} - \frac{12}{4} \]
\[ \alpha^2 + \beta^2 = \frac{49 - 12}{4} \]
\[ \alpha^2 + \beta^2 = \frac{37}{4} \]
The value of \(\alpha^2 + \beta^2\) is \(\frac{37}{4}\). This matches option (4).