Using the radioactive decay formula: \[ N(t) = N_0 \times \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}} \] Given:
- Initial amount ($N_0$) = 256\,g
- Half-life ($t_{1/2}$) = 4\,h
- Elapsed time ($t$) = 10\,h
Calculation Steps 1. Compute the exponent: \[ \frac{t}{t_{1/2}} = \frac{10}{4} = 2.5 \] 2. Calculate the decay factor: \[ \left(\frac{1}{2}\right)^{2.5} = 2^{-2.5} \approx 0.1768 \] 3. Determine remaining quantity: \[ N(10) = 256 \times 0.1768 \approx 45.26\,g \]
Verification After each 4\,h half-life:
- At 4\,h: $256/2 = 128\,g$
- At 8\,h: $128/2 = 64\,g$
- At 12\,h: $64/2 = 32\,g$
Since 10\,h is 2.5 half-lives, the exact calculation shows: \[ 256 \times (0.5)^{2.5} \approx 45.26\,g \]
Conclusion The exact amount remaining after 10\,h is \(\boxed{45.26\,g}\).