Step 1: Recall the direction cosine condition
For a line making angles \( \alpha, \beta, \gamma \) with the positive directions of the \( x \)-axis, \( y \)-axis, and \( z \)-axis respectively, the sum of the squares of the direction cosines is: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1. \]
Step 2: Substitute the given angles
The line makes angles \( \alpha = \frac{\pi}{4} \) and \( \gamma = \frac{\pi}{4} \) with the \( x \)-axis and \( z \)-axis, so: \[ \cos^2 \frac{\pi}{4} + \cos^2 \beta + \cos^2 \frac{\pi}{4} = 1. \] Since \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \), we have: \[ \left( \frac{1}{\sqrt{2}} \right)^2 + \cos^2 \beta + \left( \frac{1}{\sqrt{2}} \right)^2 = 1. \] Simplify: \[ \frac{1}{2} + \cos^2 \beta + \frac{1}{2} = 1. \]
Step 3: Solve for \( \cos^2 \beta \)
Combine terms:
\[ 1 + \cos^2 \beta = 1 \implies \cos^2 \beta = 0. \] Thus: \[ \cos \beta = 0 \implies \beta = \frac{\pi}{2}. \]
Step 4: {Conclude the result}
The angle which the line makes with the positive direction of the \( y \)-axis is \( \frac{\pi}{2} \).
Study the given below single strand of deoxyribonucleic acid depicted in the form of a “stick” diagram with 5′ – 3′ end directionality, sugars as vertical lines and bases as single letter abbreviations and answer the questions that follow.
Name the covalent bonds depicted as (a) and (b) in the form of slanting lines in the diagram.
How many purines are present in the given “stick” diagram?
Draw the chemical structure of the given polynucleotide chain of DNA.