Step 1: {Use the direction cosine property}
The direction cosines \( l, m, n \) of a line satisfy:
\[
l^2 + m^2 + n^2 = 1.
\]
Here:
\[
l = \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad m = \cos 120^\circ = -\frac{1}{2}.
\]
Step 2: {Solve for \( n \)}
Substitute \( l^2 \) and \( m^2 \) into the equation:
\[
\left( \frac{\sqrt{3}}{2} \right)^2 + \left( -\frac{1}{2} \right)^2 + n^2 = 1.
\]
\[
\frac{3}{4} + \frac{1}{4} + n^2 = 1 \quad \Rightarrow \quad n^2 = 1 - 1 = 0.
\]
Thus, \( n = 0 \).
Conclusion: The angle with the z-axis is \( 90^\circ \).