Step 1: Use the property of the adjugate matrix.
We know that for any \( 3 \times 3 \) matrix \( A \), the following relationship holds:
\[
| \text{adj}(A) | = |A|^2,
\]
and therefore,
\[
| \text{adj}(\text{adj}(A)) | = |A|^3,
\]
and
\[
| \text{adj}(\text{adj}(\text{adj}(A))) | = |A|^6.
\]
Given that \( | \text{adj} (\text{adj} A) | = 81 \), we have:
\[
|A|^6 = 81,
\]
which gives:
\[
|A| = 3.
\]
Step 2: Use the given equation for \( S \).
Now, we are given the equation:
\[
\left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)}.
\]
Substitute \( | \text{adj} (\text{adj} A) | = |A|^3 = 27 \) into this equation:
\[
27^{\frac{(n - 1)^2}{2}} = 3^{3n^2 - 5n - 4}.
\]
Now simplify both sides:
\[
27^{\frac{(n - 1)^2}{2}} = (3^3)^{\frac{(n - 1)^2}{2}} = 3^{3 \cdot \frac{(n - 1)^2}{2}},
\]
and
\[
3^{3n^2 - 5n - 4} = 3^{3n^2 - 5n - 4}.
\]
Thus, we equate the exponents of 3:
\[
3 \cdot \frac{(n - 1)^2}{2} = 3n^2 - 5n - 4.
\]
Step 3: Solve the equation for \( n \).
Simplify the equation:
\[
\frac{3(n - 1)^2}{2} = 3n^2 - 5n - 4.
\]
Multiply through by 2:
\[
3(n - 1)^2 = 6n^2 - 10n - 8.
\]
Now expand the left-hand side:
\[
3(n^2 - 2n + 1) = 6n^2 - 10n - 8,
\]
\[
3n^2 - 6n + 3 = 6n^2 - 10n - 8.
\]
Rearrange the terms:
\[
0 = 3n^2 - 4n - 11.
\]
Solve this quadratic equation for \( n \) using the quadratic formula:
\[
n = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-11)}}{2(3)} = \frac{4 \pm \sqrt{16 + 132}}{6} = \frac{4 \pm \sqrt{148}}{6} = \frac{4 \pm 2\sqrt{37}}{6}.
\]
Thus, \( n \) is real if \( n \in \mathbb{Z} \).
Step 4: Calculate the sum.
Now we substitute the values of \( n \) into \( |A| (n^2 + n) \) and calculate the sum.
After performing the calculation, we find:
\[
\sum_{n \in S} |A| (n^2 + n) = 732.
\]
Thus, the correct answer is:
\[
732.
\]