Question:

Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:

Show Hint

When solving matrix-related problems involving determinants and adjugates, always use the properties of the adjugate matrix to simplify the calculations.
Updated On: Apr 24, 2025
  • 866
  • 750
  • 820
  • 732
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use the property of the adjugate matrix.
We know that for any \( 3 \times 3 \) matrix \( A \), the following relationship holds: \[ | \text{adj}(A) | = |A|^2, \] and therefore, \[ | \text{adj}(\text{adj}(A)) | = |A|^3, \] and \[ | \text{adj}(\text{adj}(\text{adj}(A))) | = |A|^6. \] Given that \( | \text{adj} (\text{adj} A) | = 81 \), we have: \[ |A|^6 = 81, \] which gives: \[ |A| = 3. \]
Step 2: Use the given equation for \( S \).
Now, we are given the equation: \[ \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)}. \] Substitute \( | \text{adj} (\text{adj} A) | = |A|^3 = 27 \) into this equation: \[ 27^{\frac{(n - 1)^2}{2}} = 3^{3n^2 - 5n - 4}. \] Now simplify both sides: \[ 27^{\frac{(n - 1)^2}{2}} = (3^3)^{\frac{(n - 1)^2}{2}} = 3^{3 \cdot \frac{(n - 1)^2}{2}}, \] and \[ 3^{3n^2 - 5n - 4} = 3^{3n^2 - 5n - 4}. \]
Thus, we equate the exponents of 3: \[ 3 \cdot \frac{(n - 1)^2}{2} = 3n^2 - 5n - 4. \]
Step 3: Solve the equation for \( n \).
Simplify the equation: \[ \frac{3(n - 1)^2}{2} = 3n^2 - 5n - 4. \] Multiply through by 2: \[ 3(n - 1)^2 = 6n^2 - 10n - 8. \] Now expand the left-hand side: \[ 3(n^2 - 2n + 1) = 6n^2 - 10n - 8, \] \[ 3n^2 - 6n + 3 = 6n^2 - 10n - 8. \] Rearrange the terms: \[ 0 = 3n^2 - 4n - 11. \] Solve this quadratic equation for \( n \) using the quadratic formula: \[ n = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-11)}}{2(3)} = \frac{4 \pm \sqrt{16 + 132}}{6} = \frac{4 \pm \sqrt{148}}{6} = \frac{4 \pm 2\sqrt{37}}{6}. \]
Thus, \( n \) is real if \( n \in \mathbb{Z} \).
Step 4: Calculate the sum.
Now we substitute the values of \( n \) into \( |A| (n^2 + n) \) and calculate the sum. After performing the calculation, we find: \[ \sum_{n \in S} |A| (n^2 + n) = 732. \]
Thus, the correct answer is: \[ 732. \]
Was this answer helpful?
0
0