Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
\[ |\text{adj}(\text{adj}(\text{adj}A))| = 81 \] \[ \Rightarrow |\text{adj}A|^4 = 81 \] \[ |\text{adj}A| = 3 \] \[ |A|^2 = 3 \] \[ |A| = \sqrt{3} \] Now, \[ (|A|^4)^{\frac{(n-1)^2}{2}} = |A|^{3n^2 - 5n - 4} \] Simplify: \[ 2(n - 1)^2 = 3n^2 - 5n - 4 \] \[ 2n^2 - 4n + 2 = 3n^2 - 5n - 4 \] \[ n^2 - n - 6 = 0 \] \[ (n - 3)(n + 2) = 0 \] \[ n = 3, -2 \] Hence, \[ \sum_{n \in S} |A^{n^2 + n}| = |A^2| + |A^{12}| \] \[ = 3 + 36 + 3 + 729 = 732 \] \[ \boxed{732} \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]