Given that A is a square matrix of order \(3 \times 3\) such that \(A^2 = A\) (meaning A is an idempotent matrix) and I is the identity matrix of the same order, we need to find the value of \((I-A)^3 + A^2 + I\).
First, note the following relations:
To solve \((I-A)^3 + A^2 + I\), we expand \((I-A)^3\) as follows:
\((I-A)^3 = (I-A)(I-A)(I-A)\).
Expanding further:
Continuing with \((I-A)^3 = (I-A)(I-A)^2 = (I-A)(I - A)\), we apply the expansion again:
\((I-A)(I - A) = I - A - A + A = I - A\).
Thus, \((I-A)^3 = I - A\).
Substituting back into the main expression:
\((I-A)^3 + A^2 + I = (I-A) + A + I = I - A + A + I = 2I\).
Therefore, the value of the expression is \(2I\).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Rearrange the following parts to form a meaningful and grammatically correct sentence: 
P. a healthy diet and regular exercise 
Q. are important habits 
R. that help maintain good physical and mental health 
S. especially in today's busy world