If \( \bar{a} = \bar{i} - \bar{j} + 3\bar{k} \), \( \bar{c} = -\bar{k} \) are position vectors of two points and \( \bar{b} = 2\bar{i} - \bar{j} + \lambda \bar{k} \),
\( \bar{d} = \bar{i} + \bar{j} - \bar{k} \) are two vectors, then the lines \( r = \bar{a} + t \bar{b} \), \( r = \bar{c} + s \bar{d} \) are:
(1) Skew lines when \( \lambda \neq \frac{19}{3} \)
(2) Coplanar \( \forall \lambda \in \mathbb{R} \)
(3) Skew lines when \( \lambda \neq \frac{19}{3} \)
(4) Coplanar when \( \lambda = \frac{19}{3} \)
The direction vectors of the given lines are:
\[ \bar{b} = 2\bar{i} - \bar{j} + \lambda \bar{k}, \quad \bar{d} = \bar{i} + \bar{j} - \bar{k}. \]Two lines are coplanar if their direction vectors and the vector joining a point on one line to a point on the other line are linearly dependent. The vector joining points \( \bar{a} \) and \( \bar{c} \):
\[ \bar{AC} = \bar{c} - \bar{a} = (-\bar{k}) - (\bar{i} - \bar{j} + 3\bar{k}) = -\bar{i} + \bar{j} - 4\bar{k}. \]The three vectors \( \bar{b} \), \( \bar{d} \), and \( \bar{AC} \) must be linearly dependent for the lines to be coplanar. This requires:
\[ \begin{vmatrix} 2 & -1 & \lambda \\ 1 & 1 & -1 \\ -1 & 1 & -4 \end{vmatrix} = 0. \]Expanding the determinant:
\[ 2 \begin{vmatrix} 1 & -1 \\ 1 & -4 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ -1 & -4 \end{vmatrix} + \lambda \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 0. \] \[ 2[(1)(-4) - (-1)(1)] + 1[(1)(-4) - (-1)(-1)] + \lambda [(1)(1) - (1)(-1)] = 0. \] \[ 2(-4 + 1) + (-4 - 1) + \lambda(1 + 1) = 0. \] \[ 2(-3) + (-5) + 2\lambda = 0. \] \[ -6 - 5 + 2\lambda = 0. \] \[ 2\lambda = 11. \] \[ \lambda = \frac{19}{3}. \]