If \(A = \begin{bmatrix} \frac{2}{3} & 1 & \frac 53 \\[0.3em] \frac{1}{3} & \frac 23 & \frac{4}{3} \\[0.3em] \frac 73 & 2 & \frac{2}{3} \end{bmatrix}\) and \(B = \begin{bmatrix} \frac{2}{5} & \frac 35 & 1 \\[0.3em] \frac{1}{5} & \frac 25 & \frac{4}{5} \\[0.3em] \frac 75 & \frac 65 & \frac{2}{5} \end{bmatrix}\) then compute 3A-5B.
3A - 5B = 3\(\begin{bmatrix} \frac{2}{3} & 1 & \frac 53 \\[0.3em] \frac{1}{3} & \frac 23 & \frac{4}{3} \\[0.3em] \frac 73 & 2 & \frac{2}{3} \end{bmatrix}\)- 5 \(\begin{bmatrix} \frac{2}{5} & \frac 35 & 1 \\[0.3em] \frac{1}{5} & \frac 25 & \frac{4}{5} \\[0.3em] \frac 75 & \frac 65 & \frac{2}{5} \end{bmatrix}\)
= \(\begin{bmatrix} 2 & 3 & 5 \\[0.3em] 1 & 2 & 4 \\[0.3em] 7 & 6 & 2 \end{bmatrix}\)- \(\begin{bmatrix} 2 & 3 & 5 \\[0.3em] 1 & 2 & 4 \\[0.3em] 7 & 6 & 2 \end{bmatrix}\)
= \(\begin{bmatrix} 0 & 0 & 0 \\[0.3em] 0 & 0 & 0 \\[0.3em] 0 & 0 & 0 \end{bmatrix}\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
From the following information, calculate Opening Trade Receivables and Closing Trade Receivables :
Trade Receivables Turnover Ratio - 4 times
Closing Trade Receivables were Rs 20,000 more than that in the beginning.
Cost of Revenue from operations - Rs 6,40,000.
Cash Revenue from operations \( \frac{1}{3} \)rd of Credit Revenue from operations
Gross Profit Ratio - 20%
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.