>
Exams
>
Mathematics
>
Transpose of a Matrix
>
if a bmatrix 1 0 0 1 bmatrix p bmatrix 1 1 0 1 bma
Question:
If
A
=
[
1
0
0
−
1
]
,
P
=
[
1
1
0
1
]
A=\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}, P=\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}
A
=
[
1
0
0
−
1
]
,
P
=
[
1
0
1
1
]
and
X
=
A
P
A
T
X=A P A^{T}
X
=
A
P
A
T
, then
A
T
X
50
A
=
A^{T} X^{50} A=
A
T
X
50
A
=
AP EAPCET
Updated On:
May 21, 2024
[
0
1
1
0
]
\begin{bmatrix} 0 & 1 \\ 1&0\end{bmatrix}
[
0
1
1
0
]
[
2
1
0
−
1
]
\begin{bmatrix} 2 &1 \\ 0&-1\end{bmatrix}
[
2
0
1
−
1
]
[
25
1
1
−
25
]
\begin{bmatrix}25 & 1\\ 1&- 25 \end{bmatrix}
[
25
1
1
−
25
]
[
1
50
0
1
]
\begin{bmatrix} 1& 50\\ 0& 1\end{bmatrix}
[
1
0
50
1
]
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Given matrix
A
=
[
1
0
0
−
1
]
A=\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}
A
=
[
1
0
0
−
1
]
is orthogonal matrix, because
A
A
T
=
I
A A^{T}=I
A
A
T
=
I
.
So,
A
T
X
50
A
=
A
T
X
49
(
A
P
A
T
)
A
A^{T} X^{50} A=A^{T} X^{49}\left(A P A^{T}\right) A
A
T
X
50
A
=
A
T
X
49
(
A
P
A
T
)
A
=
A
T
X
49
A
P
(
A
T
A
)
=A^{T} X^{49} A P\left(A^{T} A\right)
=
A
T
X
49
A
P
(
A
T
A
)
=
A
T
X
49
A
P
=A^{T} X^{49} A P
=
A
T
X
49
A
P
=
A
T
X
48
(
A
P
A
T
)
A
P
=
A
T
X
48
A
P
2
.
.
.
=A^{T} X^{48}\left(A P A^{T}\right) A P=A^{T} X^{48} A P^{2}...
=
A
T
X
48
(
A
P
A
T
)
A
P
=
A
T
X
48
A
P
2
...
.
.
.
=
A
T
A
P
50
=
I
P
50
=
P
50
...=A^{T} A P^{50}=I P^{50}=P^{50}
...
=
A
T
A
P
50
=
I
P
50
=
P
50
∵
P
=
[
1
1
0
1
]
\because P=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
∵
P
=
[
1
0
1
1
]
⇒
P
2
=
[
1
2
0
1
]
\Rightarrow P^{2}=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}
⇒
P
2
=
[
1
0
2
1
]
⇒
P
3
=
[
1
3
0
1
]
.
.
.
\Rightarrow P^{3}=\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}...
⇒
P
3
=
[
1
0
3
1
]
...
⇒
P
50
=
[
1
50
0
1
]
\Rightarrow P^{50}=\begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix}
⇒
P
50
=
[
1
0
50
1
]
So,
A
T
X
50
A
=
P
50
=
[
1
50
0
1
]
A^{T} X^{50} A=P^{50}=\begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix}
A
T
X
50
A
=
P
50
=
[
1
0
50
1
]
Download Solution in PDF
Was this answer helpful?
13
2
Top Questions on Transpose of a Matrix
The inverse of the matrix
[
1
0
0
3
3
3
5
2
−
1
]
\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 5 & 2 & -1 \end{bmatrix}
1
3
5
0
3
2
0
3
−
1
is:
MHT CET - 2024
Mathematics
Transpose of a Matrix
View Solution
If
B
=
[
3
α
−
1
1
3
1
−
1
1
3
]
B = \begin{bmatrix} 3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}
B
=
3
1
−
1
α
3
1
−
1
1
3
is the adjoint of a 3x3 matrix
A
A
A
and
∣
A
∣
=
4
|A| = 4
∣
A
∣
=
4
, then
α
\alpha
α
is equal to:
MHT CET - 2024
Mathematics
Transpose of a Matrix
View Solution
If
A
=
[
0
1
2
1
2
3
3
1
1
]
A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}
A
=
0
1
3
1
2
1
2
3
1
, then
A
−
1
A^{-1}
A
−
1
is:
MHT CET - 2024
Mathematics
Transpose of a Matrix
View Solution
The variance of the following probability distribution is:
x
P
(
X
)
0
9
16
1
3
8
2
1
16
\begin{array}{|c|c|} \hline x & P(X) \\ \hline 0 & \frac{9}{16} \\ 1 & \frac{3}{8} \\ 2 & \frac{1}{16} \\ \hline \end{array}
x
0
1
2
P
(
X
)
16
9
8
3
16
1
MHT CET - 2024
Mathematics
Transpose of a Matrix
View Solution
The converse of
(
(
∼
p
)
∧
q
)
⇒
r
((\sim p) \land q) \Rightarrow r
((
∼
p
)
∧
q
)
⇒
r
is:
MHT CET - 2024
Mathematics
Transpose of a Matrix
View Solution
View More Questions
Questions Asked in AP EAPCET exam
If all the letters of the word ‘SENSELESSNESS’ are arranged in all possible ways and an arrangement among them is chosen at random, then, the probability that all the E’s come together in that arrangement is:
AP EAPCET - 2024
permutations and combinations
View Solution
In Young’s double slit experiment, two slits are placed 2 mm from each other. The interference pattern is observed on a screen placed 2 m from the plane of the slits. Then the fringe width for a light of wavelength 400 nm is:
AP EAPCET - 2024
Wave optics
View Solution
Any magnetic material loses its magnetic property when it is:
AP EAPCET - 2024
Magnetic Field
View Solution
The average value of electric energy density in an electromagnetic wave is:
[where
E
0
E_0
E
0
is the peak value]
AP EAPCET - 2024
Electromagnetic waves
View Solution
A resistance of
20
Ω
20 \Omega
20Ω
is connected to a source of an alternating potential
V
=
200
sin
(
10
π
t
)
V = 200 \sin(10\pi t)
V
=
200
sin
(
10
π
t
)
. If
t
t
t
is the time taken by the current to change from the peak value to the rms value, then
t
t
t
is (in seconds):
AP EAPCET - 2024
Alternating current
View Solution
View More Questions