Question:

If \(A=\begin{bmatrix}0& -tanα/2\\ tanα/2& 0\end{bmatrix}\) and I is the identity matrix of order 2,show that \(I+A=(I-A)\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}\)

Updated On: Sep 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

On the LHS
\(I+A=\begin{bmatrix}1&0\\0&1\end{bmatrix}\begin{bmatrix}0& \frac{-tanα}{2}\\ \frac{tanα}{2}& 0\end{bmatrix}\)
\(=\begin{bmatrix}1& \frac{-tanα}{2}\\ \frac{tanα}{2}& 1\end{bmatrix}......(1)\)
On the RHS
\((I-A)\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}\)
\(=\bigg[\begin{bmatrix}1&0\\0&1\end{bmatrix}-\begin{bmatrix}0& \frac{-tanα}{2}\\ \frac{tanα}{2}& 0\end{bmatrix}\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}\bigg]\)
\(=\begin{bmatrix}1& \frac{tanα}{2}\\ \frac{-tanα}{2}& 1\end{bmatrix}\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}\)
\(=\begin{bmatrix}cosα+sinα\frac{tanα}{2}& -sinα+cosα\frac{tanα}{2}\\ -cosα\frac{tanα}{2}+sinα& sinα\frac{tanα}{2}+cosα\end{bmatrix}....(2)\)\(=\begin{bmatrix}1-\frac{2sin^2α}{2}+\frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}& \frac{-2sinα}{2}\frac{cosα}{2}+(2cos^2α-1)\frac{tanα}{2}\\ -(\frac{2cos^2α}{2}-1)\frac{tanα}{2}+\frac{2sinα}{2}\frac{cosα}{2}& \frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}+1-\frac{2sin^2α}{2}\end{bmatrix}\)
\(=\begin{bmatrix}1-\frac{2sin^2α}{2}+\frac{2sin^2α}{2}& \frac{-2sinα}{2}\frac{cosα}{2}+\frac{2sinα}{2}\frac{cosα}{2}-\frac{tanα}{2}\\ \frac{-2sinα}{2}\frac{cosα}{2}+\frac{tanα}{2}+\frac{2sinα}{2}\frac{cosα}{2}& \frac{2sin^2α}{2}+1-2\frac{sin^2α}{2}\end{bmatrix}\)
\(=\begin{bmatrix}1& \frac{-tanα}{2}\\ \frac{tanα}{2}& 1\end{bmatrix}\)
Thus,from(1) and (2),we get LHS=RHS.
Was this answer helpful?
0
0