Question:

If \[ A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \] and \(\theta = \frac{2\pi}{7}\), then \(A^{100} = A \times A \times \ldots\) (100 times) is equal to:

Show Hint

When multiplying rotation matrices, the resulting angle is the sum of the individual angles of rotation. For large powers, use periodicity to simplify the angle.
Updated On: Jan 10, 2025
  • \(\begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}\)
  • \(\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\)
  • \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
  • \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The given matrix \( A \) represents a 2D rotation matrix. For \( A \), multiplying \( A \) repeatedly corresponds to successive rotations by \( \theta \). Specifically:

\[ A^k = \begin{pmatrix} \cos(k\theta) & -\sin(k\theta) \\ \sin(k\theta) & \cos(k\theta) \end{pmatrix}. \]

Here, \( A^{100} \) represents a rotation by \( 100\theta \):

\[ A^{100} = \begin{pmatrix} \cos(100\theta) & -\sin(100\theta) \\ \sin(100\theta) & \cos(100\theta) \end{pmatrix}. \]

Step 1: Simplify \( 100\theta \mod 2\pi \).

Since \( \theta = \frac{2\pi}{7} \), we calculate:

\[ 100\theta = 100 \cdot \frac{2\pi}{7} = \frac{200\pi}{7}. \]

The angle \( \frac{200\pi}{7} \) can be reduced modulo \( 2\pi \). Divide 200 by 7:

\[ 200 \div 7 = 28 \quad (\text{remainder } 4). \]

Thus:

\[ 100\theta = \frac{200\pi}{7} = 28 \cdot 2\pi + \frac{8\pi}{7}. \]

Modulo \( 2\pi \), this reduces to:

\[ 100\theta \equiv \frac{8\pi}{7} \pmod{2\pi}. \]

Step 2: Express \( \frac{8\pi}{7} \) in terms of \( \theta \).

Since \( \theta = \frac{2\pi}{7} \), we write:

\[ 100\theta \equiv 4\theta \pmod{2\pi}. \]

Step 3: Compute \( A^{100} \).

Using the formula for \( A^k \), we find:

\[ A^{100} = \begin{pmatrix} \cos(4\theta) & -\sin(4\theta) \\ \sin(4\theta) & \cos(4\theta) \end{pmatrix}. \]

Substitute \( 4\theta \) into the matrix form:

\[ A^{100} = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}. \]

Conclusion: The value of \( A^{100} \) is:

\[ \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}. \]

Was this answer helpful?
0
0