The determinant of matrix \(A\) is given by the formula:
\( \det(A) = ad - bc \)
For the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & k \end{pmatrix} \), \( a = 2 \), \( b = 3 \), \( c = 1 \), and \( d = k \).
Thus, the determinant equation becomes:
\( \det(A) = (2)(k) - (3)(1) = 2k - 3 \)
Given that the determinant \(\det(A) = 7\), we have the equation:
\( 2k - 3 = 7 \)
Solving for \( k \), add 3 to both sides:
\( 2k = 10 \)
Next, divide by 2:
\( k = 5 \)
Therefore, the value of \( k \) is 5.
Step 1: Recall determinant formula
\[ \det(A) = ad - bc \] For \[ A = \begin{pmatrix} 2 & 3 \\ 1 & k \end{pmatrix}, \] we have \(a=2\), \(b=3\), \(c=1\), and \(d=k\).
Step 2: Write determinant equation
\[ \det(A) = 2 \times k - 3 \times 1 = 2k - 3 \]
Step 3: Use given determinant value
\[ 2k - 3 = 7 \implies 2k = 10 \implies k = 5 \]
If $ A = \left[\begin{array}{cc} 3 & 1 \\2 & 4 \end{array}\right] $, then the determinant of the adjoint of $ A^2 $ is:
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is: