Step 1: Expand the matrix condition. \[ (A + B)^2 = A^2 + B^2 \] \[ A^2 + AB + BA + B^2 = A^2 + B^2 \] \[ \Rightarrow AB + BA = 0 \]
Step 2: Compute \(AB\). \[ AB = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \] \[ = \begin{bmatrix} 1 \cdot a + (-1)\cdot b & 1\cdot 1 + (-1)(-1) \\ 2a + (-1)b & 2 \cdot 1 + (-1)(-1) \end{bmatrix} \] \[ = \begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix} \]
Step 3: Compute \(BA\). \[ BA = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \] \[ = \begin{bmatrix} a \cdot 1 + 1\cdot 2 & a(-1) + 1(-1) \\ b\cdot 1 + (-1)\cdot 2 & b(-1) + (-1)(-1) \end{bmatrix} \] \[ = \begin{bmatrix} a + 2 & -a - 1 \\ b - 2 & -b + 1 \end{bmatrix} \]
Step 4: Condition \(AB + BA = 0\). \[ AB + BA = \begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix} + \begin{bmatrix} a + 2 & -a - 1 \\ b - 2 & -b + 1 \end{bmatrix} \] \[ = \begin{bmatrix} (a - b + a + 2) & (2 - a - 1) \\ (2a - b + b - 2) & (3 - b + 1) \end{bmatrix} \] \[ = \begin{bmatrix} 2a - b + 2 & 1 - a \\ 2a - 2 & 4 - b \end{bmatrix} \] For zero matrix: \[ 2a - b + 2 = 0, 1 - a = 0, 2a - 2 = 0, 4 - b = 0 \]
Step 5: Solve equations. From \(1 - a = 0 \Rightarrow a = 1\). \\ From \(4 - b = 0 \Rightarrow b = 4\). Check: \[ 2a - b + 2 = 2(1) - 4 + 2 = 0 \checkmark \] \[ 2a - 2 = 2(1) - 2 = 0 \checkmark \] Hence solution: \[ a = 1, \; b = 4 \] \[ \boxed{a = 1, \; b = 4} \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.