Step 1: Expand the matrix condition. \[ (A + B)^2 = A^2 + B^2 \] \[ A^2 + AB + BA + B^2 = A^2 + B^2 \] \[ \Rightarrow AB + BA = 0 \]
Step 2: Compute \(AB\). \[ AB = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \] \[ = \begin{bmatrix} 1 \cdot a + (-1)\cdot b & 1\cdot 1 + (-1)(-1) \\ 2a + (-1)b & 2 \cdot 1 + (-1)(-1) \end{bmatrix} \] \[ = \begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix} \]
Step 3: Compute \(BA\). \[ BA = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \] \[ = \begin{bmatrix} a \cdot 1 + 1\cdot 2 & a(-1) + 1(-1) \\ b\cdot 1 + (-1)\cdot 2 & b(-1) + (-1)(-1) \end{bmatrix} \] \[ = \begin{bmatrix} a + 2 & -a - 1 \\ b - 2 & -b + 1 \end{bmatrix} \]
Step 4: Condition \(AB + BA = 0\). \[ AB + BA = \begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix} + \begin{bmatrix} a + 2 & -a - 1 \\ b - 2 & -b + 1 \end{bmatrix} \] \[ = \begin{bmatrix} (a - b + a + 2) & (2 - a - 1) \\ (2a - b + b - 2) & (3 - b + 1) \end{bmatrix} \] \[ = \begin{bmatrix} 2a - b + 2 & 1 - a \\ 2a - 2 & 4 - b \end{bmatrix} \] For zero matrix: \[ 2a - b + 2 = 0, 1 - a = 0, 2a - 2 = 0, 4 - b = 0 \]
Step 5: Solve equations. From \(1 - a = 0 \Rightarrow a = 1\). \\ From \(4 - b = 0 \Rightarrow b = 4\). Check: \[ 2a - b + 2 = 2(1) - 4 + 2 = 0 \checkmark \] \[ 2a - 2 = 2(1) - 2 = 0 \checkmark \] Hence solution: \[ a = 1, \; b = 4 \] \[ \boxed{a = 1, \; b = 4} \]
Match List-I with List-II
| List-I (Matrix) | List-II (Inverse of the Matrix) |
|---|---|
| (A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
| (B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
| (C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
| (D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?