The drying process follows the falling rate period, and the time required to reduce the moisture content can be calculated using the formula for drying in this period:
\[
{Time} = \frac{1}{k} \cdot \ln \left( \frac{X_1 - X_e}{X_2 - X_e} \right)
\]
where:
\(k\) is the drying rate constant, given as \( \frac{1}{10^4} \) minute\(^{-1}\).
\(X_1\) is the initial moisture content (65% dry basis), so \(X_1 = 0.65\).
\(X_2\) is the final moisture content (10% dry basis), so \(X_2 = 0.10\).
\(X_e\) is the equilibrium moisture content (2% dry basis), so \(X_e = 0.02\).
Now, substitute these values into the formula:
\[
{Time} = \frac{1}{\frac{1}{10^4}} \cdot \ln \left( \frac{0.65 - 0.02}{0.10 - 0.02} \right)
\]
\[
{Time} = 10^4 \cdot \ln \left( \frac{0.63}{0.08} \right)
\]
\[
{Time} = 10^4 \cdot \ln (7.875)
\]
\[
{Time} = 10^4 \cdot 2.764
\]
\[
{Time} = 214 \, {minutes}
\]
Thus, the time required for drying is 214 minutes.