If
\[ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2 \end{bmatrix}, \]
then find the value of \( (AB)^{-1} \).
To find \( (AB)^{-1} \), we use the property of inverse matrices:
\[ (AB)^{-1} = B^{-1} A^{-1}. \]
1. Compute \( A^{-1} \): Use the formula \( A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \), where:
\[ \det(A) = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{vmatrix}. \]
2. Compute \( B^{-1} \): Similarly, calculate:
\[ B^{-1} = \frac{1}{\det(B)} \text{adj}(B). \]
3. Multiply \( B^{-1} A^{-1} \) to get \( (AB)^{-1} \).
Perform these calculations to get the final result for \( (AB)^{-1} \).
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $