We are given matrices A, B, and C
Let's test the relationship given in option (D)
$$ A\cos\theta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cos\theta = \begin{bmatrix} \cos\theta & 0 \\ 0 & \cos\theta \end{bmatrix} $$ $$ B\sin\theta = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \sin\theta = \begin{bmatrix} 0 & \sin\theta \\ -\sin\theta & 0 \end{bmatrix} $$ Now add these two matrices: $$ A\cos\theta + B\sin\theta = \begin{bmatrix} \cos\theta & 0 \\ 0 & \cos\theta \end{bmatrix} + \begin{bmatrix} 0 & \sin\theta \\ -\sin\theta & 0 \end{bmatrix} $$ $$ = \begin{bmatrix} \cos\theta + 0 & 0 + \sin\theta \\ 0 - \sin\theta & \cos\theta + 0 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} $$ This resulting matrix is exactly matrix C
Therefore, \( C = A\cos\theta + B\sin\theta \) is the correct relationship
Note that A is the identity matrix I, and C represents a rotation matrix