Question:

If \[ A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ then } A^{-1} \text{ is:} \]

Show Hint

For diagonal matrices, the inverse is simply the matrix with reciprocal diagonal elements.
Updated On: Jun 16, 2025
  • \( \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \)
  • \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \)
  • \( \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
  • \( \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The matrix \( A \) is a diagonal matrix, so the inverse of a diagonal matrix is simply the reciprocal of each diagonal element.
Given: \[ A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] To find \( A^{-1} \), we take the reciprocal of the diagonal elements.
Thus, \[ A^{-1} = \begin{bmatrix} \frac{1}{-1} & 0 & 0 \\ 0 & \frac{1}{1} & 0 \\ 0 & 0 & \frac{1}{1} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions