Understand the Problem Statement:
The problem involves determining or verifying the matrix provided as the correct answer. This typically involves performing matrix operations such as multiplication, finding the inverse, or solving a system of equations.
Define the Given Matrix or Operation:
Let us assume we are working with matrices \( A \) and \( B \), and we are tasked with finding the result of an operation. For example: \[ A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 3 \\ 0 & 1 & 2 \end{bmatrix}. \]
Perform the Required Matrix Operation:
Consider the operation \( C = A \cdot B \). Compute each element of the resulting matrix \( C \) by taking the dot product of the corresponding rows of \( A \) with the columns of \( B \).
\[ C = A \cdot B = \begin{bmatrix} (2 \cdot 1 + 1 \cdot 2 + 3 \cdot 0) & (2 \cdot 0 + 1 \cdot -1 + 3 \cdot 1) & (2 \cdot -1 + 1 \cdot 3 + 3 \cdot 2) \\ (1 \cdot 1 + -1 \cdot 2 + 2 \cdot 0) & (1 \cdot 0 + -1 \cdot -1 + 2 \cdot 1) & (1 \cdot -1 + -1 \cdot 3 + 2 \cdot 2) \\ (4 \cdot 1 + 0 \cdot 2 + 1 \cdot 0) & (4 \cdot 0 + 0 \cdot -1 + 1 \cdot 1) & (4 \cdot -1 + 0 \cdot 3 + 1 \cdot 2) \end{bmatrix} \]
Simplify Each Element:
Compute each element step-by-step:
\[ C = \begin{bmatrix} (2 + 2 + 0) & (0 - 1 + 3) & (-2 + 3 + 6) \\ (1 - 2 + 0) & (0 + 1 + 2) & (-1 - 3 + 4) \\ (4 + 0 + 0) & (0 + 0 + 1) & (-4 + 0 + 2) \end{bmatrix} \]
Simplify the matrix:
\[ C = \begin{bmatrix} 4 & 2 & 7 \\ -1 & 3 & 0 \\ 4 & 1 & -2 \end{bmatrix} \]
Verify the Result:
If solving for an inverse matrix or simplifying using row reduction, ensure that the final result matches the correct matrix:
\[ \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}. \]
Given matrices \( A \) and \( B \) where:
and the condition:
If matrix \( C \) is defined as:
then the trace of \( C \) is:
$$ \begin{vmatrix} x-2 & 3x-3 & 5x-5 \\ x-4 & 3x-9 & 5x-25 \\ x-8 & 3x-27 & 5x-125 \end{vmatrix} = 0 $$