We are given three points: \( (1, 0, -2) \), \( (3, -1, 2) \), and \( (0, -3, 4) \), which lie on the plane. The equation of the plane is of the form:
\[
\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1
\]
where \( a \), \( b \), and \( c \) are the intercepts on the X, Y, and Z axes, respectively.
Step 1: Set up the system of equations
Substitute the coordinates of the given points into the equation of the plane:
1. For the point \( (1, 0, -2) \):
\[
\frac{1}{a} + \frac{0}{b} + \frac{-2}{c} = 1 \implies \frac{1}{a} - \frac{2}{c} = 1
\]
2. For the point \( (3, -1, 2) \):
\[
\frac{3}{a} + \frac{-1}{b} + \frac{2}{c} = 1 \implies \frac{3}{a} - \frac{1}{b} + \frac{2}{c} = 1
\]
3. For the point \( (0, -3, 4) \):
\[
\frac{0}{a} + \frac{-3}{b} + \frac{4}{c} = 1 \implies - \frac{3}{b} + \frac{4}{c} = 1
\]
Thus, we have the following system of equations:
\[
\frac{1}{a} - \frac{2}{c} = 1 \quad \text{(Equation 1)}
\]
\[
\frac{3}{a} - \frac{1}{b} + \frac{2}{c} = 1 \quad \text{(Equation 2)}
\]
\[
- \frac{3}{b} + \frac{4}{c} = 1 \quad \text{(Equation 3)}
\]
Step 2: Solve the system of equations
Start with Equation 1:
\[
\frac{1}{a} - \frac{2}{c} = 1 \implies \frac{1}{a} = 1 + \frac{2}{c}
\]
Substitute \( \frac{1}{a} = 1 + \frac{2}{c} \) into Equation 2:
\[
\left( 3 \left( 1 + \frac{2}{c} \right) \right) - \frac{1}{b} + \frac{2}{c} = 1
\]
\[
3 + \frac{6}{c} - \frac{1}{b} + \frac{2}{c} = 1
\]
\[
3 + \frac{8}{c} - \frac{1}{b} = 1 \implies \frac{8}{c} - \frac{1}{b} = -2 \quad \text{(Equation 4)}
\]
Now, solve Equation 3 for \( \frac{1}{b} \):
\[
- \frac{3}{b} + \frac{4}{c} = 1 \implies \frac{3}{b} = \frac{4}{c} - 1 \implies \frac{1}{b} = \frac{4}{3c} - \frac{1}{3}
\]
Substitute this into Equation 4:
\[
\frac{8}{c} - \left( \frac{4}{3c} - \frac{1}{3} \right) = -2
\]
\[
\frac{8}{c} - \frac{4}{3c} + \frac{1}{3} = -2
\]
Multiply through by 3 to eliminate the fraction:
\[
\frac{24}{c} - \frac{4}{c} + 1 = -6
\]
\[
\frac{20}{c} = -7 \implies c = -\frac{20}{7}
\]
Step 3: Calculate the value of \( a \) and \( b \)
Substitute \( c = -\frac{20}{7} \) into Equation 1:
\[
\frac{1}{a} - \frac{2}{-\frac{20}{7}} = 1 \implies \frac{1}{a} + \frac{14}{20} = 1 \implies \frac{1}{a} + \frac{7}{10} = 1
\]
\[
\frac{1}{a} = 1 - \frac{7}{10} = \frac{3}{10} \implies a = \frac{10}{3}
\]
Substitute \( c = -\frac{20}{7} \) into Equation 3 to find \( b \):
\[
- \frac{3}{b} + \frac{4}{-\frac{20}{7}} = 1 \implies - \frac{3}{b} - \frac{28}{20} = 1
\]
\[
- \frac{3}{b} - \frac{7}{5} = 1 \implies - \frac{3}{b} = 1 + \frac{7}{5} = \frac{12}{5} \implies b = -\frac{15}{2}
\]
Step 4: Calculate \( 3a + 4b + 7c \)
Now, substitute the values of \( a \), \( b \), and \( c \) into \( 3a + 4b + 7c \):
\[
3a + 4b + 7c = 3 \times \frac{10}{3} + 4 \times \left(-\frac{15}{2}\right) + 7 \times \left(-\frac{20}{7}\right)
\]
\[
= 10 - 30 - 20 = -15
\]
Thus, the final answer is \( -15 \).
\bigskip