Question:

If A A and B B are acute angles such that sinA=sin2B \sin A = \sin^2 B and 2cos2A=3cos2B 2\cos^2 A = 3\cos^2 B , then (A,B) (A, B) is:

Show Hint

For trigonometric equations, use known values of sin and cos for standard angles to test conditions
Updated On: Jan 10, 2025
  • (π6,π4) \left(\frac{\pi}{6}, \frac{\pi}{4}\right)
  • (π6,π6) \left(\frac{\pi}{6}, \frac{\pi}{6}\right)
  • (π4,π6) \left(\frac{\pi}{4}, \frac{\pi}{6}\right)
  • (π4,π4) \left(\frac{\pi}{4}, \frac{\pi}{4}\right)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

1. Given:

sinA=sin2Band2cos2A=3cos2B. \sin A = \sin^2 B \quad \text{and} \quad 2 \cos^2 A = 3 \cos^2 B.

2. Since A A and B B are acute:

sinA=sin2B    A=arcsin(sin2B). \sin A = \sin^2 B \implies A = \arcsin(\sin^2 B).

  • For B=π4 B = \frac{\pi}{4} , sinB=22 \sin B = \frac{\sqrt{2}}{2} and sin2B=12 \sin^2 B = \frac{1}{2} .
  • Therefore, sinA=12    A=π6. \sin A = \frac{1}{2} \implies A = \frac{\pi}{6}.

3. Substitute A=π6 A = \frac{\pi}{6} and B=π4 B = \frac{\pi}{4} into the second condition:

2cos2π6=3cos2π4. 2 \cos^2 \frac{\pi}{6} = 3 \cos^2 \frac{\pi}{4}.

4. Verify:

  • cos2π6=34,cos2π4=12. \cos^2 \frac{\pi}{6} = \frac{3}{4}, \quad \cos^2 \frac{\pi}{4} = \frac{1}{2}.
  • 234=312. 2 \cdot \frac{3}{4} = 3 \cdot \frac{1}{2}.

- This holds true.

Thus, (A,B)=(π6,π4). (A, B) = \left( \frac{\pi}{6}, \frac{\pi}{4} \right).

Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions