1. Given:
sinA=sin2Band2cos2A=3cos2B.
2. Since A and B are acute:
sinA=sin2B⟹A=arcsin(sin2B).
- For B=4π, sinB=22 and sin2B=21.
- Therefore, sinA=21⟹A=6π.
3. Substitute A=6π and B=4π into the second condition:
2cos26π=3cos24π.
4. Verify:
- cos26π=43,cos24π=21.
- 2⋅43=3⋅21.
- This holds true.
Thus, (A,B)=(6π,4π).