If \(A_2B \;\text{is} \;30\%\) ionised in an aqueous solution, then the value of van’t Hoff factor \( i \) is:
To find the van’t Hoff factor (\(i\)) for the compound \(A_2B\) which is 30% ionised, we need to understand how ionisation impacts \(i\).
Assume initially we have 1 mole of \(A_2B\). Upon ionisation, it dissociates as follows:
\(A_2B \rightarrow 2A^+ + B^-\)
This means, for complete ionisation, from 1 mole of \(A_2B\), we would get 2 moles of \(A^+\) and 1 mole of \(B^-\), equating to 3 moles of ions in total.
However, it is only 30% ionised. Therefore:
From 0.3 moles of \(A_2B\) ionised, ions produced are:
Total moles after ionisation = moles undissociated + moles of ions = 0.7 + 0.6 + 0.3 = 1.6 moles
The van’t Hoff factor (\(i\)) is defined as:
\(i = \frac{\text{total moles after ionisation}}{\text{initial moles of solute}} = \frac{1.6}{1} = 1.6\)
Give reasons:
(a) Cooking is faster in a pressure cooker than in an open pan.
(b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution?
© What change in temperature would you observe after mixing liquids X and Y?