We are asked to calculate the product \( AB \). The matrix \( A \) is a 1x3 matrix and \( B \) is a 3x2 matrix. The product \( AB \) will be a 1x2 matrix. To calculate the elements of the product, perform the matrix multiplication: \[ AB = \begin{bmatrix} 2 & 0 & 6 \end{bmatrix} \times \begin{bmatrix} 3 & 5 \\ 7 & -2 \\ 6 & 6 \end{bmatrix}. \] For the first element of the resulting matrix: \[ (2 \times 3) + (0 \times 7) + (6 \times 6) = 6 + 0 + 36 = 42. \] For the second element of the resulting matrix: \[ (2 \times 5) + (0 \times -2) + (6 \times 6) = 10 + 0 + 36 = 46. \] Thus, the product matrix is \[ AB = \begin{bmatrix} 42 & 46 \end{bmatrix}. \]
We are given two matrices:
\[ A = \begin{bmatrix} 2 & 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 5 \\ 7 & -2 \\ 6 & 6 \end{bmatrix} \] We need to compute the matrix product \( AB \). Note that \( A \) is a 1x3 matrix, and \( B \) is a 3x2 matrix. The resulting product \( AB \) will be a 1x2 matrix. To perform the matrix multiplication, we calculate each element of the resulting matrix by taking the dot product of the row of \( A \) with the corresponding column of \( B \). 1. First element: \[ 2 \times 3 + 0 \times 7 + 6 \times 6 = 6 + 0 + 36 = 42 \] 2. Second element: \[ 2 \times 5 + 0 \times (-2) + 6 \times 6 = 10 + 0 + 36 = 46 \] Thus, the matrix product \( AB \) is: \[ AB = \begin{bmatrix} 42 & 46 \end{bmatrix} \] .
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: