Step 1: Use the volume formula of a tetrahedron.
The volume of a tetrahedron with vertices \( A, B, C, D \) is given by
\[
V = \frac{1}{6} \left| \det(\vec{AB}, \vec{AC}, \vec{AD}) \right|
\]
Step 2: Find the vectors.
\[
\vec{AB} = (4,-4,-2), \quad
\vec{AC} = (3,-1,0), \quad
\vec{AD} = (0,-4,1)
\]
Step 3: Form the determinant.
\[
\det
\begin{vmatrix}
4 & -4 & -2 \\
3 & -1 & 0 \\
0 & -4 & 1
\end{vmatrix}
\]
Step 4: Evaluate the determinant.
\[
= 4(-1\cdot1 - 0\cdot(-4)) + 4(3\cdot1 - 0\cdot0) - 2(3\cdot(-4) - (-1)\cdot0)
\]
\[
= 4(-1) + 12 + 24 = 32
\]
Step 5: Find the volume.
\[
V = \frac{1}{6} \times 32 = \frac{16}{3}
\]
Step 6: Conclusion.
The volume of the tetrahedron is \( \dfrac{16}{3} \) cubic units.