If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is:
10 \(l\)n 3 - 6
5 \(l\)n2 - 6
10 \(l\)n 2 - 6
5 \(l\)n 2 - 3
\(5f(x)+4f(\frac{1}{x})=\frac{1}{x}+3......(i)\)
Replace \(x\rightarrow \frac{1}{x}\)
\(5f(\frac{1}{x})+4f(x)=x+3.....(ii)\)
By (i) and (ii)
\(9f(x)=\frac{5}{x}-4x+3\)
\(18\int_{1}^{2}f(x)dx=\int_{1}^{2}(\frac{10}{x}-8x+6)dx\)
\(18\int_{1}^{2}f(x)dx = \) 10 ln 2 - 6
So, the correct option is (C): 10 \(l\)n 2 - 6
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: