$1+x^{4}+x^{5}=a_{0}+a_{1}(1+x)+a_{2}(1+x)^{2}+$ $a_{3}(1+x)^{3}+a_{4}(1+x)^{4}+a_{5}(1+x)^{5} $ $=a_{0}+a_{1}(1+x)+a_{2}\left(1+2 x+x^{2}\right)+a_{3}(1+3 x$ $\left.+3 x^{2}+x^{3}\right)+a_{4}\left(1+4 x+6 x^{2}+4 x^{3}+x^{4}\right)+a_{5}(1 $ $\left.+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}\right)$ So, Coeff. of $x ^{ i }$ in $LHS =$ Coeff. of $x ^{ i }$ on $RHS$ $i =5 \Rightarrow 1= a _{5} \ldots$(i) $i =4 \Rightarrow 1= a _{4}+5 a _{5}= a _{4}+5 $ $ \Rightarrow a _{4}=-4 \ldots$(ii) $i =3 \Rightarrow 0= a _{3}+4 a _{4}+10 a _{5} $ $ \Rightarrow a _{3}-16+10=0 $ $ \Rightarrow a _{3}=6 \ldots$ (iii) $i =2 \Rightarrow 0= a _{2}+3 a _{3}+6 a _{4}+10 a _{5} $ $ \Rightarrow a _{2}+18-24+10=0 $ $ \Rightarrow a _{2}=-4 $ Put $ x =-1 $ $1= a _{0} $ Now differentiate w.r.t. $x$. $4 x^{3}+5 x^{4}=a_{1}+2 a_{2}(1+x)+3 a_{3}(1+x)^{2}+\ldots .$ Put $x=-1$ $\Rightarrow 1=a_{1}$ Again differentiate w.r.t. $x$ $12 x^{2}+20 x^{3}=2 x a_{2}+6 a_{3}(1+x)$ Put $x=-1$ $12 - 20 = 2a_2 $ $\Rightarrow a_2 = -4$
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
Properties of Binomial Theorem
The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
There are (n+1) terms in the expansion of (x+y)n.
The first and the last terms are xn and yn respectively.
From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.