\(\frac1{81}\)
\(\frac{1}{9}\)
\(\frac{1}{27}\)
\(\frac{1}{243}\)
\(1+\frac{\tanθ}{\cotθ}+\bigg(\frac{\tanθ}{\cotθ}\bigg)^2+\bigg(\frac{\tanθ}{\cotθ}\bigg)^3+...∞ = \frac32\)
\(\Rightarrow 1+\frac{\tan\theta}{\frac{1}{\tan\theta}}+\bigg(\frac{\tan\theta}{\frac{1}{\tan\theta}}\bigg)^2+\bigg(\frac{\tan\theta}{\frac{1}{\tan\theta}}\bigg)^3+...\infin=\frac{3}{2}\)
\(\Rightarrow1+\tan^2\theta+\tan^4\theta+\tan^6\theta+...\infin=\frac{3}{2}\)
We know that the square of any number is positive. So, from the above equation we can conclude that it is a descending GP series.
So, \(\frac{1}{1-(\tan\theta)^2}=\frac{3}{2}\)
\(2=3-3(\tan\theta)^2\)
\(\tan^2\theta=\frac{1}{3}\)
Thus, \(\frac{\tan^2\theta-\tan^4\theta}{\cot^4\theta-\cot^2\theta}\)
= \(\frac{\frac{1}{3}-\bigg(\frac{1}{3}\bigg)^2}{(3)^2-3}\)
\(=\frac{\frac{1}{3}-\frac{1}{9}}{9-3}\)
\(=\frac{1}{27}\)
Hence, option C is the correct answer.
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |