This equation involves the inverse tangent function, \( \tan^{-1}x \). The goal is to simplify both sides using addition and subtraction formulas for inverse tangent and then compare their arguments to determine the possible values of \(x\).
The given equation is:
\[ \tan^{-1}(2x - 1) + \tan^{-1}(2x + 1) = \tan^{-1}(4x) - \tan^{-1}(2x) \]
We use the formulas:
\[ \tan^{-1}A + \tan^{-1}B = \tan^{-1}\left(\frac{A + B}{1 - AB}\right), \quad \tan^{-1}A - \tan^{-1}B = \tan^{-1}\left(\frac{A - B}{1 + AB}\right) \]
These are valid when the corresponding products of \(A\) and \(B\) satisfy \(AB < 1\).
Applying the addition formula to the left-hand side (LHS):
\[ \tan^{-1}(2x - 1) + \tan^{-1}(2x + 1) = \tan^{-1}\left(\frac{4x}{2 - 4x^2}\right) \]
Applying the subtraction formula to the right-hand side (RHS):
\[ \tan^{-1}(4x) - \tan^{-1}(2x) = \tan^{-1}\left(\frac{2x}{1 + 8x^2}\right) \]
Equating the arguments:
\[ \frac{4x}{2 - 4x^2} = \frac{2x}{1 + 8x^2} \]
Simplify:
\[ 4x(1 + 8x^2) = 2x(2 - 4x^2) \] \[ 4x + 32x^3 = 4x - 8x^3 \] \[ 40x^3 = 0 \quad \Rightarrow \quad x = 0 \]
Checking \(x = 0\) in the original equation:
\[ \tan^{-1}(-1) + \tan^{-1}(1) = \tan^{-1}(0) - \tan^{-1}(0) \] \[ -\frac{\pi}{4} + \frac{\pi}{4} = 0 \]
Hence, \(x = 0\) satisfies the equation. Testing other values such as \(x = \tfrac{1}{2}\) and \(x = \tfrac{3}{4}\) shows that they do not satisfy the equation, confirming this is the only valid solution.
\[ \boxed{x = 0} \]

