The circuit simplifies to:
\[ Y = \overline{\overline{A} \cdot \overline{B}} = \overline{\overline{A}} + \overline{\overline{B}} = A + B \]
(De-Morgan’s law)
Match List-I with List-II:
List-I (Amplifiers) | List-II (Characteristics) |
---|---|
(A) CE Amplifier | (I) Current buffer circuit |
(B) CB Amplifier | (II) Voltage buffer circuit |
(C) CC Amplifier | (III) High current gain |
(D) Darlington Amplifier | (IV) High power gain |
Choose the correct answer:
Match List-I with List-II:
List-I (Effects) | List-II (Electronic Devices) |
---|---|
(A) Channel length modulation | (I) Zener diode |
(B) Channel width modulation | (II) BJTs |
(C) Early effect | (III) JFETs |
(D) Tunneling effect | (IV) MOSFETs |
Choose the correct answer:
Match List-I with List-II
List-I (Instructions) | List-II (Addressing Mode) |
---|---|
(A) LDA 2100 H | (I) Immediate |
(B) RAL | (II) Register |
(C) ADD C | (III) Direct |
(D) ANI 08 H | (IV) Implied |
Match List-I with List-II
List-I (Data Bus Status Output) | List-II (Status Signals) |
---|---|
(A) Memory read | (I) 0, 1, 1 |
(B) Op-code fetch | (II) 0, 1, 0 |
(C) INTR acknowledge | (III) 0, 0, 1 |
(D) Memory write | (IV) 1, 1, 1 |
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: