Step 1: Understanding Enthalpy Differential
The total differential of enthalpy \( H \), using its definition \( H = U + PV \), is given by:
\begin{equation}
dH = dU + P dV + V dP
\end{equation}
Using the First Law of Thermodynamics and assuming reversible processes:
\begin{equation}
dU = T dS - P dV
\end{equation}
Substituting into \( dH \), we get:
\begin{equation}
dH = T dS + V dP
\end{equation}
So the correct expression is:
\[
{dH = T dS + V dP}
\]
Therefore, option (A): \( dH = V dP - T dS \) is incorrect.
Step 2: Verifying Other Options
- (B) and (C) are known thermodynamic identities derived from the Gibbs-Helmholtz equation.
- (D) is a correctly rearranged form of the temperature differential of Gibbs free energy.
Conclusion: Among the options, only option (A) presents an incorrect expression for \( dH \).