We begin with the formula for the inverse of the wavelength:
\( \frac{1}{\lambda} = RZ^2 \left( \frac{1}{n_i^2} - \frac{1}{n_f^2} \right) \)
Given values: initial energy level \( n_i = 3 \), final level \( n_f = \infty \)
Substituting the values:
\( \frac{1}{\lambda} = 10^{-7} \times 1^2 \left( \frac{1}{3^2} - \frac{1}{\infty^2} \right) \) \( = \frac{10^{-7}}{9} \)
Thus, the wavelength is:
\( \lambda = 900 \, \text{nm} \)
Hence, the Correct Answer is (A): Paschen series, \( \infty \to 3 \)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: