We begin with the formula for the inverse of the wavelength:
\( \frac{1}{\lambda} = RZ^2 \left( \frac{1}{n_i^2} - \frac{1}{n_f^2} \right) \)
Given values: initial energy level \( n_i = 3 \), final level \( n_f = \infty \)
Substituting the values:
\( \frac{1}{\lambda} = 10^{-7} \times 1^2 \left( \frac{1}{3^2} - \frac{1}{\infty^2} \right) \) \( = \frac{10^{-7}}{9} \)
Thus, the wavelength is:
\( \lambda = 900 \, \text{nm} \)
Hence, the Correct Answer is (A): Paschen series, \( \infty \to 3 \)
Match List-I with List-II 
Choose the correct answer from the options given below:
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $