To solve this problem, we need to find the probability that the absolute difference between two integers \(x\) and \(y\) picked with replacement from the set \(\{0, 1, 2, \ldots, 10\}\) is greater than 5. The total number of possible outcomes when picking two integers from this set with replacement is 121, because there are 11 choices for \(x\) and 11 choices for \(y\), giving us \(11 \times 11 = 121\) total outcomes.
Now, we need to find the number of favorable outcomes where \(|x - y| > 5\). This inequality can be written as two conditions:
Let's analyze these conditions:
| y | Possible x values (x > y + 5) | Count |
| 0 | 6, 7, 8, 9, 10 | 5 |
| 1 | 7, 8, 9, 10 | 4 |
| 2 | 8, 9, 10 | 3 |
| 3 | 9, 10 | 2 |
| 4 | 10 | 1 |
Total count for this condition: \(5 + 4 + 3 + 2 + 1 = 15\).
| x | Possible y values (y > x + 5) | Count |
| 0 | 6, 7, 8, 9, 10 | 5 |
| 1 | 7, 8, 9, 10 | 4 |
| 2 | 8, 9, 10 | 3 |
| 3 | 9, 10 | 2 |
| 4 | 10 | 1 |
Total count for this condition: \(5 + 4 + 3 + 2 + 1 = 15\).
Adding the counts for both conditions, we have \(15 + 15 = 30\) favorable outcomes.
The probability is thus given by: \(\frac{30}{121}\)
The correct option is \( \frac{30}{121} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 